

PRESSURE RELIEF DEVICE **EVALUATON**

FOR:

PRV-01288, 01388 & 01488

Rev

FL0001A, B and C

Southern Company Services

In accordance with ASME Section VIII Division I - 2010

Equipment is protected from overpressure:

☑ Yes ☐ No

PRD is installed correctly:

☐ Yes ☐ No

Corrective Action Required:

☐ Yes ☑ No

Comments: It is assumed that the pipe is designed for at least 150 psig and that the inlet water pump cannot exceed 150 psig. Surface area of top head has been included in fire case calculations based on the assumption that the candles will allow flow between the two parts of the vessel during the fire

Set pressure is at vessel MAWP, 150 psig. Relief area has been increased to next larger size to provide safety factor for valves involving two phase flow. This results in a "K" orifice in a 3"x4" valve or 4"x6" valve. Valve to be installed with minimum length inlet piping (4") and reducer at valve inlet.

Engineer: William J. Heron	Date:	9-Nov-11
Checked By: Gordon F. Wilson	Date:	12-Dec-11
Revised/Checked: Gordon F. Wilson	Date:	26-Jan-12

Revision D - confirmed set point to be 114 psig for all sheets.

Revision E - corrected discharge piping backpressure labelling and incorporated piping sketches

Revision F - changed set pressure to 150 psig which changed fluid properties. Deleted page

of Flash calculations as it is not applicable.

Southern Company Generation

Kemper County

MM102690 Unit 1

PO: MPC18481-0001 BHS Filtration

PRV-01288 CALCS Rev: F

IGCC - GASIFIER - MULTIPAGE - GI WATER CANDLE FILTER - PRESSURE

PRD SCENARIO SUMMARY

Client and Location	Southern Company Services					
Project	Gasifier Islan	Gasifier Island Coal Candle Filter				
Pressure Relief Device No.	PRV-01288, 0	PRV-01288, 01388 & 01488				
P&ID Number	600179925 Re	ev F				
Equipment Number	FL0001A, B a	nd C				
Equipment Drawing Number	2011-WC-806	8				
Vessel Decription	Candle Filter					
Design Pressure	150 p	sig				
Design Temperature	350	Deg F				
Set Pressure	150 p	sig				
Fluid Relieved by PRD	Water					

Perigon project no.	109874
By/date	WJH/Nov 9 2011
Checked by/date	GFW/1/26/12
Revised by/date	WJH/1/26/12
Revision Number	F

			RELIEF	LOAD	RELIEF (2) CO	ONDITIONS			
CAUSES OF RELIEF	EVALUATED	PERCENT OVER- PRESSURE	VAPOR FLOW	LIQUID FLOW	PRESSURE	TEMP.	VAPOR AREA	LIQUID AREA	REQUIRED AREA
CAUSES OF RELIEF		PRESSURE	LB/HOUR	LB/Hour	PSIG	DEG F	SQ IN.	SQ IN.	SQ IN.
BLOCKED DISCHARGE	Not App.								
2. COOLANT SUPPLY FAILURE	Not App.								
3. REFLUX FAILURE TO TOP OF TOWER	Not App.								
4. REFLUX FAILURE TO SIDE OF TOWER	Not App.								
5. ACCIDENTAL MIXING	Not App.								
6. POWER FAILURE	No Relief								
7. ACCUMULATION OF NON-CONDENSIBLES	Not App.								
8. FAILURE OF AUTOMATIC CONTROLS	No Relief								
9. ABNORMAL HEAT OR VAPOR INPUT	Not App.								
10. INADVERTENT VALVE OPENING	No Relief								
11. CHEMICAL REACTION	See Fire								
12. THERMAL EXPANSION	Not App.								
13. JACKET EXTERIOR FIRE	Not App.								
14. SHELL EXTERIOR FIRE	Yes	21%	3274		196	380			0.446
15. COIL RUPTURE	Not App,							L	<u> </u>
16. UTILITY FAILURE	No Relief						See No	te Below	
17. CLOSED OUTLET ON FIRED HEATER	Not App.						L		
18. LOSS OF ABSORBENT	No Relief								
19. ABNORMAL FLOW THROUGH VALVE	No Relief								
20. Other (Specify)	None								

SIZING BASIS: Fire Case

DESCRIPTION:

2

Comments:

This relief valve will operate under three separate conditions in the fire case.
Liquid Flow (while liquid is cleared from the inlet nozzle)
Vapor Flow (when liquid carryover ceases)
Two Phase Flow (while liquid is carried over by vapor))

Generally recommended practice is to use twice the required size

Req'd Size 1.162

0.446

0.467

1.162 This requires a "J" orifice

USE NEXT SIZE UP DUE TO UNCERTAINTY AROUND TWO PHASE FLOW

PRV-01288 Rev F calcs 1 26 12

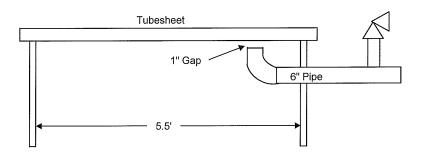
		Prepared For	: Southern Co	ompany Services
C = Change A = Addition D = Deletion		Location Project Title Project # Specification #	109874 109874	
D - Deletion	Spi	ing-Loaded Pressure Relief Valve Spe	cification	
-	12/21/2011		Origin Date	12/21/2011
Revision #	<u> </u>		Revision Date	1/26/2012
 dentificati	ion			
1	Valve Tag #		PRV-01288, 01	
2	System Name		Gasifier Island	Coal Candle Filter
3	P&ID Drawing #	Vendor Drawing #	109874	2011-WC-8068
5	Project # Manufacturer	Site	109074	
6	Manufacturer's Model No.			
7	Conventional or Balanced Bellows	Auxiliary Nameplate (Yes or No)	Conventions	al No
8	Size: Inlet	Outlet inc	nes	3" x 4"
9	Inlet Connection Type - Class	Outlet Connection Type - Class	150#RF	150# RF
10	Orifice Letter (if applicable)	Area (Sq in)	K	2.042
Service Co	onditions			
11	System Design Pressure (psig)	Design Temperature °F	150	350
12	System Allowable Accumulation %		21%	
13	Fluid	State (Gas, Liquid or Two-phase)	Water	Two Phase
14	Operating Pressure, Minimum		'sig 75.0	90
15	Operating Temperature, Minimum	Maximum	°F 70	90
16	Relief Temperature	12 17 17 17	°F 380	1 400
17	Molecular Weight (Gas or Vapor)	Ratio of Specific Heats	18.02	1.29
18	Specific Gravity at Relieving Condition		0.937	1 1000
19	Viscosity at Relieving Conditions, cp	Compressibility Factor	0.130 sig 150	1.000 150.0
20	Valve Set Pressure			100.0
21	Built-Up Back Pressure, Superimposed Back Pressure, Min		osi 4.50 sig 0.0	1.7
23	Back Pressure Correction Factor Kb	Maxilliani	1.00	,
24	Device Required Relief Rate	lbs	s/hr 3274.0	Note 5 of Water
25	Rated Capacity @ 21%		s/hr *	of Water
26	Name Plate Capacity 21%		s/hr *	
27	Rupture Disc (Yes/No)	Combination Capacity Factor Kc	NA	NA
28	Actual Capacity @ Maximum Allowabl	e Relieving Pressure (Units & Fluid)		Water
29	ASME & N.B. Stamp (Yes/No)	Applicable Section	Yes	VIII
30	ASME Code Case Number, if applicat		NA NA	
31	Test Frequency (specify months or year	ars)	Once per yea	ar ar
Materials o	of Construction			
32	Body or Base	Bonnet	CS	CS
33	Nozzle	Disc	CS	CS
34	Bellows	Coating	NA	NA
35	Spring	Button or Washer	17-7PH	
36	O-Ring	Durometer	Teflon	
37	Inlet Flange	Outlet Flange	CS	CS
38	Сар		CS	
Auxiliary				
39	Test Lever (Yes or No)	Type (Open or Packed)	Yes	Packed
40	Gag (With or Without)	Field Test Connection (Yes or No)	Without	No
41	339 (
Notes				
1. ** indica	tes information to be provided by vendo			
2. Name P	late capacity to be stamped in GPM of	vater, PPH of Steam, or Scfm of Air at indicated	overpressure	
3. Vendor	shall attach a SS nameplate, 1/16" thick	, with 3/16" stamped, etched or pressed letters w	th following	SEE SEE
	tion: Plant - , Project # , EN# , Model		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Manufacture, Purchase Order #.		10.00	
		awings, installation, operation, and maintenance I	Manuals.	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	given flow then use next larger size sta			
0, 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
100000000000000000000000000000000000000				1.5

PRV-01288 Rev F calcs 1 26 12 **FIRE CASE** C = Change A = Addition D = Deletion DEVICE # PRV-01288, 01388 and 01488 PROJECT # 109874 TITLE: WHICH FIRE CODE IS TO BE USED? (NFPA, API, ASHRAE, NA) API Are the fire case calculations needed ONLY in order to get heat up rate for liquid expansion case (Y/N) N Are these calculations needed ONLY for surface areas, volumes of equipment or 2 phase flow check (Y/N) DATA REQUIRED FOR EXTERNAL FIRE CASE 4th Section 2nd Section 3rd Section 1st Section Tank Description of section Diameter in feet (D1) 8.469 V Straight Length in feet (L1) Straight Length in feet (L1) Hor/Vert/Sphere (H/V/S) % of Total Vessel Height that is wetted 1st/Top Head (1=Elip,2=Hem,3=ASME dish,4=Cone,5=Flat,6=Std dish 2nd/Bot Head (1=Elip,2=Hem,3=ASME dish,4=Cone,5=Flat,6=Std dish Bottom Cone Length (if applicable), ft Angle of cone from vertical (for conical heads only) 100.00 4.750 60.00 Percentage of the top (end) that is exposed 100 Percentage of bottom (end) that is exposed Percentage of shell that is exposed 100 100 How many segments of this vessel are identical to = #Seg = 1 section #1. I.E. a spinning machine would have several blocks that are interconnected to form one large tank. UG133.c Note 1 Percentage of liquid height is not equal to volume % full except at 50% full. A condenser would be 100% filled because entire surface is wetted. Note 2 Note 3 For air cooled condensers: Fins are destroyed early in fire, wetted surface area is .3 times bare tube area for sections without subcooling, wetted surface area = bare tube area for subcooling sections. Per API 521 sect 3.15.17.1. Q= 21,000 or 34,000 * F * A . Is 1st Section an air cooled condenser (Y/N)? The jacketed portion of a vessel or pipe is not normally counted as exposed. Note 3 Program automatically corrects exposed area for vessels taller than 25'. Note 4 Note 5 For Ashrae cases do not enter data for associated piping. CALCULATON OF VAPOR AND LIQUID VOLUMES Volume of partially filled dished ends is approximation HEAD #1 HEAD #2 CONE SHELL V1 = Volume of First Section, ft^3 21.8 12.6 37.6 201.2 273.1 V2 = Volume of Second Section, ft³ V3 = Volume of Third Section, ft³ V4 = Volume of Fourth Section, ft^3 VAP VOL, cu ft IF Heat up Time is desired, Enter wall thickness 0.0 Sec 1 Thickness, I Sec 2, Thick, In LIQ VOL, cu ft % Full 273.1 100.0% 0.0 Shel 0.375 V2 = 0.333 Top or End 1 V3 = Bottom or End 2 0.375 V4 = Liquid Volume = VL1 + VL2 + VL3 Vapor volume = Total Volume - Liquid Volume 273.15 0.00 VG = EXPOSED WETTED SURFACE AREA (FT^2) NFPA-30 assumes vessels are 90% full and uses factors below. OSHA 1910.106 follows NFPA and both apply only to "Storage Tanks". 55% of total exposed surface area of sphere is wetted surface 75% of total exposed surface area of horizontal tank is wetted surface First 30' of surface area of vertical tank is wetted surface (API 520 uses 25'.) ĔWS = FWS = EWS = API requires calculations to determine the actual wetted surface area and applies to all tanks. Engineering

judgement can exclude top or portion of top of vertical tanks in API calcs.

NFPA, API & OSHA do not comment on whether the jacketed area of jacketed vessels is considered to be "Exposed Wetled Suface Area". Use engineering judgment

CALCULATION OF SURFACE AREA


-1 1-2	A = Area 1st	Section (A1) + Area		NFPA TOTAL				
	NFPA	NFPA	API 520 S	SHELL	HEAD ACTU	AL AREA	EXP. AREA	
	EWS %	EXPOSED SHELL	EXPOSED	WETTED	TOP/1ST HD	BOT/2ND HD	TIMES EWS%	
1st	1	146.3	146.3	146.3	36.0	27.4	209.8	
2nd		2,111.0						
3rd							***	1
4th								ļ
	WETTE		EXPOSED & WE		TOT EXP.	EXPOSED		
	TOP/1ST HD	BOT/2ND HD	TOP/1ST HD	BOT/2ND	WET AREA	AREA		
1st	36.0	27.4	36.0	27.4	209.8	209.8		
2nd								
3rd							Calculated	Area to be
4th							Areas	Used in Calcs
Exposed	Wetted Surfa	ce Area Per OSHA	1910.106 & NFPA	30 = A =		1x209.8 =	209.8	209.8
Exposed	Dry Area For	Vapor Pres. Rise (/	API-520) = Exp. Apr	rea - Exp. W	/et Area =	209.8 - 209.8 =	0.0	0.0
Exposed	Wetted Surfa	ce Area Per API 52	0 (At % Full) = A =	=		209.8 =	209.8	209.8

HEAT INPUT FRO	M FIRE						8/15/2011
From NFPA 30 Appen					NFPA Equation	ns	
For Areas <2					Q= 20,000 * F *	Α	
For Areas >2	00 but <1000 Ft^2				Q= 199,300 * F	* A^.566	
1	000 but <2800 Ft^2				Q= 963,400 * F	* A^.338	
	2800 Ft^2 and Press	ure > 1 Psig			Q= 21,000 * F *		
	2800 Ft^2 and Press				Q= 963,400 * F	* A^.338with A set	at 2800
From API 521						(Sect 3.15.2.1.1)	
	h good drainage and				Q= 21,000 * F *		
For areas wit	hout good drainage	and fire fighting e	quipment		Q= 34,500 * F *	A^.82	
Q = Total heat a	absorption (input) to	the wetted surfac	e, in BTU/H	IR	API Factors	.1.	
F = Environme	nt factor for tanks co				F = 1 for bare ve		
	will not react due to					s with water spray essels (from Table	
Good drainag	je means slope of > ist remain in place d	=1% away from ta	nk for at lea	astouit.		be nonflammable	
Can only use	one factor for each	unny me when no vaccal	ses unecle	u at it		eel or SS metal ja	
Call Only use	One factor for each	V65561.			API-521 Table 5		,
NEPA 30 Fac	tors (Section 2-3.	5.7)				ty/thickness at Re	lieving Temp
	rotected vessels	 ,			F=.3	4 BTU/Hr Ft^2 F	
	sels protected by go	od drainage and	with		F=.15	2	
	area > 200 Ft^2. Go				F=.075	1	
	at least 1% slope fro				F=.05	.67	
	50' away which has				F=.0376	.6	
	sels protected by w			!	F=.03	.4	
	sels protected by in				F=.026	.33	
15 101 Ves	at mean insulation		uotivity			e grade earth cov	ered.
E = 15 for vo	ssels protected by i		nray and			grade earth cove	
113 101 VC	good drainage	iodiation, nator of	praj ana		Section #1	Section #2	Section #3
Divide Fahar							Ft Deg F) at Rel
Divide F abov					1.3	lty (BTO III/TII OG	T L Dog 1 / at Nor
	ombustion AND bur		IIIOI			Thickness (Inche	2)
	is miscible with wat				1	THICKINGS (ITICING	s)
And Only	fire potential is spilla		D D1-			1 1	1
	He	eat of Combustion Btu/Lb	Ft / Min		E = k /1660 T6/	(21000 * Thicknes	:e\
D II		D(U/LD	rt/iviii	Calculated F =	·····	1.0000	1.0000
Relieved fluid	F41	11.932.5	0.0049	Average F =		Lowest F used in	
Comparison Fluid Heat of Combustion a	Ethanol			Average F -	0.1020	LOWEST USEG II	TAI 113 .020
meat of Combustion at	iu buin Nate Quain	/ IOI Teduction in t		Is Drainage goo	od? Y/N		N
				Will insulation		I	N
	NFPA-30						API-521 Table 5
F=	1.000	Minimum is .15				F =	1.000
LH = Latent Heat of	f Evaporated Fluid	at relieving tempe	rature	MINT		844.4	BTU/LB
Per API	Q= 34,500 * F * A^	82	= 34.500 *	1 * 209.8^.82 =		2,764,604	
Per NFPA	Q= 20,000 * F * A	<u></u>		1 * 209.8 =		1,667,610	
RELIEF CAPACITY R		PA		for wet surface	es)		Lbs/Hr
RELIEF CAPACITY R	EQUIRED PER API		Wr = Q/LF	1	/		Lbs/Hr
Note: Fire case assum			lowing and	all internal heat e	ources stop /AP	1 521 Sect 3 10 2	2)

Note: Fire case assumes all input and output streams stop flowing and all internal heat sources stop. (API 521 Sect 3.19.2.2)

SET PRESSURE REDUCTION CALCULATIONS

6" vent pipe is installed with inlet near tubesheet in order to aid vapor removal during filter fill

Volume above Gap =

1.98 cu ft

Vapor generation rate at 10% overpressure 3252 / 18.03 * 379.3 / 60 * 14.7 / 179.7 * (460 + 373) / 530 =

147 cu ft/min

Time required to fill the gap with vapor

0.81 seconds

Ar = $\frac{Q^*(G^{\Lambda}.5)}{38.0 * Kd * Kw * Ku * (P1-Pb)^{\Lambda}.5}$

Assume Ar is "H" orifice =

0.873 in^2

Q =

Assumption during initial release Based on back pressure of 1 psig

435.3 gpm 58.20 cuft/min

0.97 cuft/sec

Volume in pipe before relief inlet (assume 3 ft)

0.59 cu ft

Valve must relieve

1.98 + 0.59 cu ft of liquid before it will begin to relieve vapor

Time Required

2.65 seconds

Vapor generated in the time required to clear liquid =

6.47 cuft

V1 = P2V2 Volume of vessel = V1

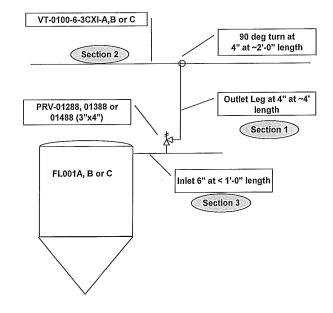
273.1 cuft 182.3 psia

(273.1 + 6.5 - 2.57) * 179.7 / 273.1 =

102.5 psia

This is less than the 196.2 psia allowed by the code for the fire case (21% overpressure).

Therefore the liquid will be cleared from the nozzle before the vessel reaches 196.2 psia.

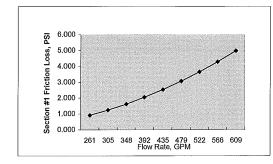


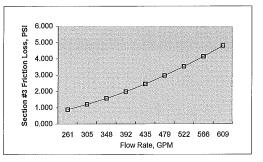
					Section 1	Section 2	Section 3	Section 4	
	Name where flow d			S	PRV to Hdr	Header	Tank to PRV	0.00	
TUBING, PIPE-	English or Metric? (*	rubing, Pipe E,	Pipe M)		Pipe E	Pipe E	Pipe E	1000	11.3.14
			Nominal Pipe Size		4	6	4	Start Control	
	10, 10S, 20, 30, 40S		Schedule or Tube		40	40	40		,,,,,,
	, 80, 100, 120, 160, 1			INCHES	4.026	6.065	4.026		0.00045
For Non stan	idard sizes Use A - 2	Z)	ABS. ROUGHNESS		0.00015	0.00015	0.00015	0.00015	0.00015
	DING FITTING LEN			FEET	6.00	50.00	3.00	0.00	
	ENGTH OF PIPE F			FEET	0.00	0.00	0.00	0.00	
ELBOW	90 DEGREE	ST'D SCREWE							
			D OR WELDED (R					5 5	1.0
			S (R/D = 1.5) ALL T	YPES	2	1 1	1	1	
		OTHER R/D =			14/25 14 14	<u> 1881 - 1 1 1</u>		11.5	100 mm
	90 DEGREE	ST'D SCREW							
	(Pipe size		D OR WELDED (R		1828 (1974)				
	smaller than		S (R/D = 1.5) ALL T	YPES			SCALOROS (SOROS ANTREAS CONTRACTOR)		
	main line)	ID of smaller p		1.2					
	90 DEGREE	1 BEND (90 De							
	MITERED	2 BENDS (45 I					478.7		
	(R/D = 1.5)	3 BENDS (30 I	Deg Angle)		100				Asset 1
		4 BENDS (22.5	5 Deg Angle)						
		5 BENDS (18 I	Deg Angle)				134		34.5
	45 DEGREE	STANDARD (R/D=1), all types				11.7		
		LONG RADIUS	S (R/D=1.5), all typ	es				5 T	
	45 DEGREE	1 BEND							100
	MITERED	2 BENDS				44.4			
RETURN	180 DEGREE	SCREWED (R	/D=1)						
BEND		FLANGED OR	WELDED (R/D=1))					1
		LONG RADIUS	S (R/D = 1.5) all typ	es	Ary			Α	15
TEE	SIDE OUTLET	SCREWED				1 1			
		SCREWED, LO	ONG RAD.		1.0				
			ED OR WELDED				1		
		STUB-IN BRAI			1 1				\$4.0
	RUN	SCREWED					1 - 1 - 1 - 1	110	
	THROUGH	FLANGED OR	WELDED				1.		
	TI INCOCKI	STUB-IN BRAI			5,				1
VALVE	GATE/BALL	FULL-PORT				****		1.1	
IVALVE	OR PLUG	10% REDUCE	D PORT						4.
	OKTEOG	20% REDUCE			· ·				
	GLOBE	STANDARD	DION			The No.	19	+ State Co.	16.5
	GLOBE	ANGLE OR Y-	TVDE				3.5		
	DIAPHRAGM	ANGLE ON 1-	11114			10.0	15. 1	31000	1.7.4
	BUTTERFLY							114.50	1.00
	CHECK	LIFT-TYPE					100		1
	CHECK	SWING-TYPE							
		TILTING-DISK							
ENTERNIOR LO	100				200		1	144.1	-
ENTRANCE LC	155	NORMAL			1.5		,		
EVITLOSS		BORDA			200	1	1.00	10.1	-
EXIT LOSS	DE CIZE	INII CT ID	EXIT ID			ı			
CHANGE IN PII	PE SIZE	INLET ID	3.000	# Dads		201000000000000000000000000000000000000	1		
I		6.000		# Rqd> # Rqd>	1		1.5		
I		3.000	4.000		'	1			
1		4.000	6.000	# Rqd>		4			
1				# Rqd>			:		I *
		5-15-72-8-7-3		# Rqd>				4,10,40,40	ļ
i Miligan			NUMBER OF FIT				1 0.50		
Rupture Disk	In Column 4) FACTOR FOR FI				0.59		1 1 1 1
the Chart) FACTOR FOR FI				0,43		<u> </u>
EQUIPMENT	Section 1 or 2?	LOSS, PSI	@ GIVEN, lbs/hr	K	Eq. Len. Ft	Eq. Len. Ft			To which column should
144	The Market	49.75	100	- 27	0.0	0.0	0.00	0.00	N values below
For Liquids	Marie Register.				0.00	0.00	0.00	0.00	be added
For Gases	Remain Reports	<u> </u>			0.00	0.00	0.00	0.00	(G,H,I [] J)?
For Gases: W	=19.3Cv P ₁ Y((dP/P	₁)Mw/(T ₁ Z)) [^] .5	Cv =		Xt =		Column >		₩
	V = 63.3 Cv Cf (S.G.		Cv =		Cf or FI =		Column >		
	tal "N" for pipe and f				2.43	11.22	2.82	0.00	0.00
	for all fittings & equ				2.13	9.70	2.67	0.00	0.00
For Gases Total	I "N" for pipe and fit	ings =			2.51	4.44	2.57	0.00	0.00
	for all fittings & equir				2.24	2.82	2.42	0.00	0.00
1. 51 00000 11									

Friction Factor by Churchill Equation - Chem Eng 11/7/77 pg 91-92: Kinetic energy Factor - Chem Eng 10/13/75 pg 128 2K Friction Losses (K=K1/Re + Kinf (1 + 1/d)) CHEM. ENG., AUG 24, 1981 PP 96-100- Chem Eng 11/7/88 pg 90 Change in Pipe Size

PIPING SKETCH FOR PRV-01288, 01388 & 01488

NOTES:


- Not all piping and/or flanges shown.
 Estimated at 4 feet of additional head on discharge of relief devices to connect to main vent line header.
 Section descriptions apply only to the flow case described for this scenario.



PRV-01288 Rev F calcs 1 26 12 1/26/2012

PRESSURE	LOSS - LIQUI	DFLOW			
DEVICE # PRV-01288, 01388 & 01488			CT NUMBER		
CLIENT/LOCATION Sask	Charlotte	PRO		Gasifier Island Co	al Candle Filte
CALCULATION BY/DATE WJ Heron	1/26/2012		REVISION		
PROBLEM DESCRIPTION SECTION #1					itlet)
SECTION #2					
SECTION #3					
SECTION #4	Relief Valve Inle	et (Section of pi	oe up to secti	on #3)	
COMMENTS / DISCUSSION		A THE STATE OF STATE OF	magasta		HANDERS
		signatura di Parameter di Param	4.445.41	1. 1. 15 1. 15 1. 15 1.	
				Markey Harris	
	e i i je seta i jese	TENER SE		para Agrica bear	4.5
		SECT #1	SECT #2	SECT #3	SECT #4
INE DESCRIPTION		PRV to Hdr	Header	Tank to PRV	
IOMINAL PIPE SIZE, INCHES (.5, 1, 1.5, 2 ETC.)		4.00	6.00	4.00	
IPE SCHEDULE (5S, 10, 10S, 20, 30, 40S, 40		40	40	40	
STD, XS, 60, 80, 100, 120, 160, XXS)		4.026	6.065	4.026	
ROUGHNESS (STEEL=.00018 IN.)	INCHES	0.00015	0.00015	0.00015	0.00015
LUID NAME		Water	Water	Water	Water
LOW RATE	GPM	435.33	435.33	435.33	
SPECIFIC GRAVITY AT RELIEVING TEMPERATURE OF	380	0.94	0.94	0.94	0.96
DENSITY	LB/CU FT	58.52	58.52	58.52	59.74
/ISCOSITY	CENTIPOISE	55.59	55.59	55.59	0.00
LOW RATE	LBS/HR	204195	204195	204195	
ELOCITY	FT/SEC	10.96	4.83	10.96	
RESSURE DROP	PSI/100 E.FT	8.22	1.20	8.22	
OTAL EQUIVALENT LENGTH	FEET	48.2	369.2	3.0	
RICTION FACTOR		0.0364	0.0412	0.0364	
EYNOLDS NUMBER		5757	3822	5757	
OTAL FRICTION LOSSES (PIPE + FITTINGS)	PSI	2.54	2.05	2.45	
RICTION LOSS FROM OTHER SECTIONS OF PIPE	PSI	-15-57-000000000000000000000000000000000			
OTAL FRICTION LOSSES (PIPE + FITTINGS)	FT OF FLUID	6.24	5.05	6.03	0.00
NCREASE IN ELEVATION FROM END TO END	FT OF FLUID	1 1 1 1 1 1 1 1 1 1 1	4.00	0.00	0.00
OTAL CHANGE IN PRESSURE FROM END TO END	FT OF FLUID	6.24	9.05	6.03	0.00
OTAL CHANGE IN PRESSURE FROM END TO END	PSI	2.54	3.68	2,45	0.00
OTAL	PSI		6.21		2.45

2.45	=	1.63%
150.00		
4.59	=	3.06%
150.00		
	150.00 4.59	150.00 =

9

PRESSURE RELIEF DEVICE SIZING FOR VAPORS

For Steam For Gases and Vapors API-520 Sect 3.7.1 AV = Wr 51.5 * P1 * Kd * Kn * Ksh * Kb ASME and API-520 Sect. 3.6.2 Critical Flow <u>W * [T Z / Mw]^.5</u> (Cg * Kb * Kd * P1) P1 = Set Pressure + Accumulation +14.7 If ASME flow coefficent units = pph steam: P1 and Av are predetermined for the API-520 Sect 3.6.3.1 selected model Sub-Critical Flow
W * (Z * T/(MW * P1 * (P1-Pb)))^.5
/35 * F₂ * Kd
((k-1)/k * r^(2/k) * ((1-r^((k-1)/k))/ (1-r))^.5 If ASME flow coefficient units = pph/psia: Wr = pph/psia x P1 and Av is unique for each selected model Av = F2 = If ASME flow coefficient units = Scfm/Psia: Wr = Scfm/Psia x P1 and Av is unique for each selected model If ASME flow coefficient units = Scfm: P1 and Av are predetermined for the selected model 3274 Required relieving capacity divided by # of devices at same set pressure Compressibility Factor at relieving pressure Lbs/Hr 3274 1.00 18.0 MW = Molecular Weight 1.294 14.70 Cp/Cv Psia 144.6 Critical 1.0000 Coefficient of Sub-Critical Flow Back pressure correction factor equal to 1.0 for standard valve if back pressure <60% of inlet pressure. Looku 1.000 tables for standard valves, curve fit for Bellows valves (Consolidated, Crosby, Farris) Kd = Coefficient of Discharge per ASME Redbook

Kn = Napier correction factor for steam (For P1<1500 psig, Kn =1), For P1>1500, Kn =(.1906P1 - 1000) / (.2292P)

Kc = Napier correction factor for steam (For P1<1500 psig, Kn =1), For P1>1500, Kn =(.1906P1 - 1000) / (.2292P)

Kc = PSV-Factor for rupture disk in combination with relief valve. Use Certified Combination Factors

Ksh= Superheated Steam Correction Factors from API-520 Table 9

Cg = Gas Constant based on Cp/Cv, (dimensionless) = 520 (k (2/(k+1)/((k+1)/(k-1))) / (.2292P) 1.00 1.00 394 144.6 Psia Relieving pressure (including allowable overpressure) 800.0 Deg R Relieving Temperature Deg F 340.0 Determine Required Area with Kd value In^2 0.4462 ASME Area Required for Critical Flow In^2 Area Required for Subcritical Flow ln^ Area Required for Steam (Assumes critical flow) Maximum required area (assuming no rupture disk) in^: 0.4462 Maximum required area (with rupture disk) = Av/Kc = 0.446 / 1 = in^2 In^2 0.559 Minimum standard orifice for selected vendor In^2 NonAPI means orifice does not follow the API designations In^2 of D through T 0.446 REQUIRED ORIFICE ASME AREA Min. Vendor Orifice Size 0.559 ACFM SCFM Lbs/Hr G Orifice Designation EXISTING Valve Orifice Designation or Size = For Existing Valve, convert SCFM to lbs/hr of fluid W = SCFMair x C x MW^.5 / (18.4 x (T x Z)^.5) = Maximum Capacity of selected orifice with this fluid

Max. std. AIR Capacity of this standard Orifice at 60 deg F = 356 KAP (28.97/(60+460))^^.5 =

Max. STEAM Capacity of the selected Orifice = 51.5 KAP

Flow Rate to be used for pressure drop calcs, if rated capacity is not used. 1437.5 5827 1271 where KAP = $W/(C(M/T)^{4}.5) = 69.3$ 3571

PRESSURE RELIEF DEVICE SIZING FOR LIQUIDS

WJH/1/26/12

REQUIRED FLOW RATE FROM TABLE I	NVIDED BY # OF F	RELIEF DEVI	ICES OPERATING SIMULTANEOUSL	Υ _	435.3	GPM
FLOW RATE TO BE USED IN CALCULA		GPM				
TEOVITATE TO BE COED IN CHECOES	TONO II DITTERE		Based on brief time until inlet nozz	e is no	204194.7	Lbs/hr
ASME & API-520 Sect 3.8			longer submerged			
	Q*(G^ 5)					
Ar = 38.0 * Kd * Kw	* Kii * (P1-Pb)^	.5				
00,0 114 1111	(Water	NA
Q = Flow rate				gpm	435.335	
Wr = Required relieving capacity				lbs/hr	204194.7	
T = Relieving Temperature				°F	380	
Pb = Back pressure at outlet of valve	= Max Static Press	ure + Pressu	re Drop =	Psia	100.6	100.6
v = Viscosity of Liquid				ср	0.130	
Ku = Viscosity correction factor = 1/(.9	935 + 2.878/Rey^.5	+ 342.75/Re	ey^1.5) = 1 if required flow is very low	but viscosity is normal	1.00	
Kw = Liquid flow factor for variable bac	1.000					
Kd = Coefficient of discharge for the va	0.878					
G = Specific Gravity of the liquid					0.873	
P1 = Relieving Pressure (including allo	wable overpressure	9)		Psia	210.7	
Determine Required Area with K	d value					
Preliminary Area of Standard orifice (uncor	rected for viscosity)		ln^2	4.822	
Reynolds # for flow through preliminary sta	ndard orifice (Requ	ired to deterr	nine Ku)		3727324	
Maximum required area (assuming no rupt	ure disk)		Ar =	In^2	1.1618	0.0000
Maximum required area (with rupture disk)			Ar / Kc =	In^2	1.1618	
,		M	lin. Vendor Orifice Size =	J	1.4300	Sq In
	Lbs/Hr	GPM				
Calculated Capacity of required orifice	234,052	535.8	Existing Orifice Designation or	Size =		Sq In
Calculated capacity of Selected orifice						
Capacity to be used for Selected orifice		Pi	rogram will use the lesser of calculated			
Existing Valve Nameplate Capacity, g	om of water		Gpm of actual fluid which		lbs/hr of actual	fluid
Flow Rate to be used for pressure drops,	lbs/hr		Gpm of actual fluid with S	pecific Gravity of 0.873		

Two Phase Flow Calculations

RELIEF DEVICE

PRV-01288, 01388 & 01488

Should two phase flow be considered (yes/no)?		Yes			
Fluid Water	Lbs/Hr	ACFM			
Vapor Flow Rate from Maximum Case		3274.0	23.4		
					an anar
Input Vapor Flow Rate To be Used in 2 phase Flow Cas	3274.05	139.1			
Liquid Flow Rate Based on User Input			.1		
Input Liquid Flow To Be Used	3159.67	Lbs/Hr	7.2	Gpm	
	re Increment to be used >	2.00	Used in HE	M Max & Tw	
Pa = Relieving Pressure = Set Pressure + Allowable Overpressure		196.2	Psia		
Pb = Critical Throat Pressure Estimated Value found by itera	ation	100.6	Psia	100.6	Revised Est
Temperature in Throat (Corresponds to Relief Valve Throat Pressure)		319	Deg F	< Calculate	ed to be 319
Does flashing occur (Y/N)?		Υ			
Xa = Weight Fraction of gas in Inlet to device (0 to 1.0)		0.5089		vapor in upst	
Xb = Weight Fraction of gas in throat		0.5089	A	Iternative Xt	
	Lbs/CuFt				
Liquid Density at inlet Conditions	54.47				
Liquid Density at throat conditions (Flashing may occur)					
Vapor Density at Inlet Conditions	0.4288		From Literat		
Vapor Density at Throat Conditions Assumes Z = 1	0.3210	Density	From Literat	ure, if knowr	0.321

ORIFICE SIZING CALCULATIONS									
Are Physical Property equations to be used? Y or constants calculated below N?	N	Constants calculated below are alternative.							
The Physical Property equations are more accurate than the constants calculated below.									
Adjust Pressure Increment when using constants.	5.0	<not needed="" physical="" properties<="" td="" using="" when=""></not>							
Calculation for Constant $n = ln(P_a/P_b) / ln(VapDen_a/VapDen_b) =$	2.3070	Subscript "a" is properties at relieving cond.							
Calculation for Constant c = VapDen _a / (P _a ^(1/n) =	0.043	Subscript "b" is at throat conditions							
Calculation for Constant b = -T Cpliq (1/Gasden - 1/Liqden) / (5.404 Lat^2)	-5.25E-04	Phylical Properties at relieving pressure & temp.							
Calculation for Constant $a = X_a - (b * P_a)$	6.12E-01								
Calculation for Constant $e = (LiqDen_a - LiqDen_b)/(P_a-P_b)$	-0.0228								
Calculation for Constant d = Liq den - (e P _a)	58.9468	AV4737							
Maximum Mass Velocity (From Calculation Table)	648.9	Lb/s/Ft^2 At 86.2 psia							
Combined Coefficient using Kd for Liquids = Kb*Kc*Kd =	0,85	Diers Project manual Session 3 Sect C-4							
Required Relief Valve Area A = 144 * W /(3600 G Kd) =	0.467	In^2 based on G calculated below							

⊨ "Emergency Relief System Design Using Diers Technology" - by Fisher, Forrest pa						page 120-130		Phys Prop	File Name>	RVData	
	CALCULATION TABLE USING CONSTANTS (HEM MODEL FOR TWO PHASE FLOW)										
				,			•	Mass Vel	Crit Flow		
	Pressure	Vap Wt Fract.	1/Vapden	1/Ligden	Mix Vol	Vol(Pin-Pout)	G^2 =	G	Gc	Pressure	
	Р	X = a + bP	Vg=1/(cP^(1/n)	Vf=1/(d+eP)	V, cuft	Sum(Vol dP)	2V^(-2Sum)	Lbs/sec/ft^2	Lbs/sec/ft^2	P, Psia	
1	196.20	0.5089	2.3321	0.0184	1.1958	0	0	0.0		196.20	< Relieving F
2	191.20	0.5115	2.3583	0.0183	1.2153	6.028	8.2	194.5	1090.5	191.20	
3	186.20	0.5141	2.3856	0.0183	1.2354	12.154	15.9	271.6	1072.7	186.20	
4	181.20	0.5168	2.4139	0.0182	1.2562	18.383	23.3	328.5	1054.6	181.20	
5	176,20	0.5194	2.4433	0.0182	1.2778	24.718	30.3	374.5	1036.3	176.20	
6	171.20	0.5220	2.4740	0.0182	1.3002	31.163	36.9	413.3	1017.7	171.20	
7	166.20	0.5246	2.5060	0.0181	1.3234	37.722	43.1	446.7	998.9	166.20	
8	161.20	0.5273	2.5394	0.0181	1.3475	44.399	48.9	476.0	979.9	161.20	
9	156.20	0.5299	2.5743	0.0181	1.3726	51.200	54.4	501.8	960.6	156.20	
10	151.20	0.5325	2.6109	0.0180	1.3988	58.128	59.4	524.7	941.0	151.20	
11	146.20	0.5351	2.6492	0.0180	1.4261	65.190	64.1	545.0	921.1	146.20	
12	141.20	0.5378	2.6895	0.0179	1.4546	72.392	68.4	563.0	900.9	141.20	
13	136.20	0.5404	2.7319	0.0179	1.4845	79.740	72.4	579.0	880.4	136.20	
14	131.20	0.5430	2.7765	0.0179	1.5159	87.241	75.9	593.1	859.5	131.20	
15	126,20	0.5456	2,8237	0.0178	1.5488	94.903	79.1	605.5	838.4	126.20	
16	121.20	0.5483	2.8736	0.0178	1.5835	102.734	81.9	616.1	816.8	121.20	
17	116.20	0.5509	2.9266	0.0178	1.6202	110.743	84.4	625.2	795.0	116.20	
18	111.20	0.5535	2.9829	0.0177	1,6590	118.941	86.4	632.8	772.7	111.20	
19	106.20	0.5561	3.0430	0.0177	1.7002	127.339	88.1	638.9	750.0	106.20	
20	101.20	0.5588	3.1072	0.0177	1.7440	135.950	89.4	643.6	726.9	101.20	
21	96,20	0.5614	3.1762	0.0176	1.7909	144.787	90.3	646.8	703.3	96.20	
22	91.20	0.5640	3,2506	0.0176	1.8411	153.867	90.8	648.6	679.2	91.20	
23	86.20	0.5666	3,3310	0.0176	1.8951	163.207	90.9	648.9	654.7	86.20	< Choked Flo
24	81.20	0.5693	3,4184	0.0175	1.9536	172.829	90.6	647.8	629.6	81.20	
25	76.20	0.5719	3.5139	0.0175	2.0171	182.756	89.8	645.1	603,9	76.20	
26	71.20	0.5745	3.6188	0.0174	2.0865	193.015	88.7	640.9	577.6	71.20	
27	66.20	0.5772	3,7349	0.0174	2.1629	203.638	87.1	635.1	550,6	66.20	
		sure providing m		86.20		Corre	sponding throa	temperature =	319	°F	
					=				.t. N. t d.		
	Max. mass	vel. (ignoring p	oipe)	648.9	bs/(sec Ft^2)		<g cannot="" exc<="" td=""><td>eed this. It is typ</td><td>ocally less th</td><td>an GC.</td><td>l</td></g>	eed this. It is typ	ocally less th	an GC.	l

MINIMUM REQUIRED AREA FOR TWO PHASE	FLOW Ar =	0.467	IN^2	Orifice
	Standard Orifice Size =	0.559	IN^2	G
Maximum orifice capacity (ignores pipe length)	= 3600 Kd G A/144 =	7708	lbs/hr	

PERIGON ENGINEERING

PRV-01288 Rev F calcs 1 26 12 1/26/2012

DETERMINE MAXIMUM DISCHARGE PIPE CAPACITY FOR TWO PHASE FLASHING FLOW (HEM)

From "Easily Size Relief Devices For Two Phase Flow" by Leung, Chemical Engineering Progress Dec 1996 Po = Throat Pressure = Inlet Pressure of discharge pipe Xo = Weight fraction of inlet vapor in Discharge Pipe 0.509 Vgo = Specific volume of inlet vapor 2.332 ft^3/lb Vfo = Specfic volume of inlet liquid 0.018 ft^3/lb Vo = Specific volume of inlet mixture 1.196 ft^3/lb Cpo = Heat capacity of inlet liquid 1.034 Btu/lbF To = Inlet temperature 319.0 °F 779.0 °R vfgo = Difference between specific gas volume & liquid volume 2.314 ft^3/lb hfgo = latent heat at discharge pipe inlet conditions 870.10 Btu/lb w = Xo vgo/vo + (Cpo 778 To 144 Po)/vo (vfgo/(hfgo 778))^2 1.17 If w>4 then $G/(Po/Vo)^{.5} = (.6055 + .1356 \ln w - .0131 \ln w^{2}) / w^{.5}$ 0.576 If w<4 then G/(Po/Vo)^.5 = .66 w^.39 0.7006 K = Koutlet + Kout2 (IDout1/IDout2)^4 K = 11.22 x (6.065/4.026)^4 + 2.51 = 2.51 Gc = G/(Po/Vo)^.5 (32.17* 144* Po/Vo)^.5 437.4 lbs/(sec Ft^2) Graphs have been fitted to curves and interpolated Gc/Goc for horizontal pipe from figure VII-1 (Goc is nozzle flow) 0,62 P2c/Po from figure VII-4 0.38 P2c = Po P2c/Po Psia 38.4 Since P2c is greater than final outlet pressure, these equations apply H = Elevation Increase from relief device to discharge point Ft 10 Fi = Denliq g H /(K Po 144 32.17) 0.01 G/Gc Vertical (from Figure VII-2) = 0.43 G/Gc corrected for inclination = G/Goc - Fi (G/Goc-G/Gcvert)/.1 = 0.594 Flow area of pipe used for determining K above
Discharge Piping capacity = 3600 Gc Area/144 G/Gc(corrected)

AICHE Journal May 1990 - Leung "The Discharge of Two Phase Flashing Flow in a Horizontal Duct"

AICHE Journal May 1990 - Leung "The Discharge of Two Phase Flashing Flow in a Horizontal Duct"

AICHE Journal May 1990 - Leung "The Discharge of Two Phase Flashing Flow From an Inclined Duct"

Maximum Flow through Inlet pipe =	276,819 lbs/hr	< Limited by maximum 3% pressure drop	4.5	psi	
Maximum Flow through orifice =	7,708 lbs/hr				
Maximum Flow through discharge piping =	82,732 lbs/hr				
MAXIMUM FLOW =	7,708 lbs/hr				

12 73

82,732

Sq In

lbs/hr

