JSW THE JAPAN STEEL WORKS, LTD. HIROSHIMA PLANT

	QSI	PA30240	A8-1	
REV.:	Ė	PAGE	1	OF

JSW JOB NO.

CLIENT : PHILLIPS SUMIKA POLYPROPYLENE CO.

LOCATION : PASADENA, TEXAS

MWK REQ. NO. : 6014-0 + D1-V248-01

SCEC PROJECT NO. : 13A61

PHILLIPS JOB ASSIGNMENT NO. :

EXTRUDER AND AUXILIARIES # 101624

ITEM NO. : <u>JA46-9098</u>

A MANUFACTURING

QUOTATION

SPECIFICATION

MA30670

FOR

/2SW ⚠ CMP305X-9SW

CERTIFIED FINAL

This document is the property of jsw and issued for confidential use of the customer only and not be copied or reproduced in any manner or released to a third party without prior written permission from The Japan Steel Works, Ltd. (JSW)

Distribution						Plastics Machinery		Electrical
MWK	4					ngineering Grou	1.5	Engineering Group
SCEC	4	Rev	Issue Date	Description				Стобр
Houston	1			*	Approved	Checked	Prepared	Checked
Head Office	1		Mai. 18	2	1	- , , [.	, , , ,	<u>'</u>
JS生管	1	707	192		.e 1/0	k katuska	k.kat	iska
組立第2	1	1	Har. 30				1	`
js品証	2	4	194	by meeting with	customer	L. kataka	le kata	ski
JS調達	1	1	April 11					1 =
鉄樹	1	72	1911			k, batasifa	Ir leaters	ka
JS開発	1	3	July 22	2	z.	i 1 <i>i 1</i>	k.katao	il- c
JS電装	1	\wedge	0CT. 28	1/0 = 9 - 12	1	E. Kataokk	K. Rafile	1
_		4	44	MANUFACTUZING JPEC.	k. Entao En	X Shirahama	m ofactor	M. Oshuta
File	1				Nu. JIAI II	7 2 1 1 1 2 1 1 0	. //	M. Ostate
TOTAL	19	727	. '95	Revised Utility etc ?5.6.12.13, 17.18 24.25, 27-29-	HH7W7666	4. Makida	J. Marida	Alanede

PAGE Z UF

EQUIPMENT SPECIFICATIONS

INDEX

	e g	PAGE
Ι.	GENERAL	3
II.	SCOPE OF SUPPLY	4
III.	OUT OF VENDOR'S SCOPE OF SUPPLY	6
IV.	OPERATING AND DESIGN CONDITIONS	7
	A. Properties of feed materials B. Products C. Machine capacity D. Site data E. Applicable codes and standards F. Language and measuring units G. Utilities available	10 10
v .	DOCUMENT SUBMITTALS	14
VI.	INSPECTION AND TEST	14
VII.	PAINTING AND RUST PREVENTION	14
VIII.	PACKING	14
IX.	MECHANICAL GUARANTEE	15
Х.	EQUIPMENT SPECIFICATIONS	16
		17 26 27
	I. Pellet conveying water system (PCW)	41

KEV.: 4 PAGE 3 OF

125W 19

EQUIPMENT SPECIFICATION FOR CMP 305X-95W

I. GENERAL

This specification covers the furnishing of all labor, materials and services in connection with design, fabrication and delivery of the Continuous Mixer Gear Pump System Model CMP 305X-95W. 12 SW

CMP 305X-95W is designed and fabricated to receive and mix powder and additives, and pelletize the extruded strands through die plate in hot water chamber.

Pellets are then conveyed to drying and classifying equipment, where conveying hot water is removed from pellets and pellets are dried and classified.

PAGE 4 OF

II.SCOPE OF SUPPLY

А.	Star	ting Unit	1 Set
В.	Mix	<u>er</u>	1 Set
	1.	Mixer gear reducer	
	2.	Mixer screws	
	3.	Hopper cylinder	
	4.	Mixing cylinder	
	5.	Discharge cylinder	
	6.	Hydraulic oil unit for slot clearance adjustment	
	7.	Mixer cylinder supports	
	8.	Cylinder cooling water unit (CCW unit)	
	9.	Valve stand	
	10.	Vacuum system	
C.	Dive	erter Valve	1 Set
	1.	Diverter valve	
D.	Gear	r pump	1 Set
	1.	Gear reducer	
	2.	Separate drive gear	
	3.	Couplings	
	4.	Gear pump	
E.	Scre	en Changer	1 Set
	1.	Screen changer	
	2.	Hydraulic oil unit for screen changer and diverter valve	
		with interconnecting pipe	
	3.	Adaptor	
F.	Unde	erwater Cutter	1 Set
	1.	Die holder	
	2.	Die plate	
	3.	Water chamber	
	4.	Cutter unit	
	5.	Hot oil unit	

G.	Car	riages	1 Set
н.		5	<u>1 Set</u>
ı.	Pell	et Conveying Water System (PCW)	1 Set
	1. 2. 3. 4. 5.	PCW tank PCW pump PCW cooler PCW screen PCW 3 way valve	
J.	1. 2. 3. 4. 5.	Mixer Motor, Gear Pump Motor and Cutter Motor Auxiliary Motors Control Panels 1) Hot oil control panel 2) Local start up panel Instruments Unit Wiring	1 Set
	1. 2. 3. 4. 5.	Safety guards for rotating parts Anchor bolts and liners Special tools for maintenance Flexible hose Rails for carriages Special piace when gear pump failure (Option) Bellows for hopper	<u>1 Set</u>
L.	1. 2. 3.	t-up spare parts Cutter blades : 2 sets (32 pcs.) Screen pack : 4 sets (8 pcs.) Rupture disk : 5 pcs per each	1 Set

III. OUT OF VENDOR'S SCOPE OF SUPPLY

The following equipment and work are out of scope.

- 1. Foundation and civil work
- 2. Installation, erection and test operation at job site.
- 3. Standard tools for assembly and disassembly of equipment and instrument.
- 4. Lubricant and hydraulic oil, and hot oil
- 5. Inslation
- PCW piping, duct piping and the following interconnecting piping (Refer to P&I DWG.)
 - 1) Interconnecting piping between CCW unit and valve stand
 - 2) Interconnecting piping between valve stand and mixer
 - 3) Hot oil piping between hot oil unit and pelletizer
- 7. Operation and maintenance stage
- 8. Switch gear device and power supply equipment
 - a) H.V. panel for large motor
 - b) L. V. panel for auxiliary motors
- 9. Power transformer for gear pump drive system
- 10. Distributed control system
- 11. Control panel including PLC system in control room
- \land 12. Local start up panel

PAGE / UF

IV. OPERATING AND DESIGN CONDITIONS

A. PROPERTIES OF FEED MATERIALS

Table 1-1 Properties of Feed Material

Description	Powder	Pellet
Components	Polypropylene	Polypropylene / Polyethylene
Shape	Power	Pellet
Particle size Ave.	800-900 micron	0.126-0.177in (3.2-4.5mm)Dia x 0.0787-0.118in (2.0-3.0mm)t
	Min. 40 micron Max. 2000 micron	
Melt index	0.5 - 90	0.5 - 90
Melting point	338°F (170°C)	338 °F (170 °C) / 284 °F (140 °C)
Viscosity	•••	
Specific heat	0.55 (0.55) at 230°F (110°C)	0.55 (0.55) at 230°F (110°C)
Btu/lb°F(kcal/kg°C)		
True density Ib/ft ³	56.2	56.2
(kg/m³)	(900)	(900)
Bulk Density lb/ft ³	21.8 - 28.1	31.2
(kg/m³)	(350 - 450)	(500)
Corrosiveness	None	None
Adhesivity	None	None
Angle of repose	35°	36°
Feed temperature	Ambient - 194°F (50°C)	Ambient

Table 1-2 Properties of Feed Material

Description	A-Additives	C-Additives	Liquid - Additives
Components			
Shape	Powder	Powder	Liquid
Particle size Ave.			
Min.	1.3 micron	40 micron	
Max.	1000 micron	2000 micron	•••
Melt index			
Melting point	113 - 266°F	284°F	103 - 176°F
	(45 - 130°C)	(140 °C)	(39.5 - 80 °C)
Specific heat	0.5 (0.5)	0.5 (0.5)	1.0 (1.0)
Btu/lb°F(kcal/kg°C)		į	
True density lb/ft ³	62.4	56.2	53.1 - 59.3
(kg/m³)	(1000)	(900)	(850 - 950)
		· ·	[at 212°F (100°C)]
Bulk Density lb/ft ³	18.7 - 31.2	22.5	
(kg/m ³)	(300 - 500)	(360)	
Corrosiveness	None	None	None
Adhesivity	Severe	Severe	Mild
Angle of repose	35°	53°	35554
Feed temperature	Ambient	Ambient	176 - 212°F
			(80 - 100°C)

Note: Physical properties of Additives are typical figures.

PAGE 9 OF

Table 2 Properties of Feed Materials

(unit : wt%)

Materials	Case 1	Case 2	Case 3	Case 4
Polymer	99.4 - 99.9	98.8 - 99.8	98.3 - 99.7	79.4 - 89.9
A Additives	0.1 - 0.6	0.1 - 0.6	0.1 - 0.6	0.1 - 0.6
C Additives	0		0.1 - 0.5	0
Liquid Additives	0	0.1 - 0.6	0.1 - 0.6	0
Pellet	0	0	0	10 - 20

B. PRODUCTS

Pellets are to be cylindrical in shape,

Typical Pellet Dia. : 0.126 - 0.177 in (3.2 - 4.5mm)

Typical Pellet Length : 0.0787 - 0.118 in (2.0 - 3.0mm)

True Density : 56.2 lb/ft³ (900 kg/m³)

Bulk Density : 31.2 lb/ft³ (500 kg/m³)

Angle of repose : 36°

Std. deviation value : Diameter ≤ 0.23

Thickness ≥ 0.29

Ratio of thickness : $\ell 1/\ell 2 \leq 1.2$

Contents of linked pellets : Less than 0.01 wt%

Oversize + Undersize : Less than 0.05 wt%

Contents of whisker pellets :

Over 0.0197 in (0.5 mm) : Less than 5.0 wt% Over 0.0394 in (1.0 mm) : Less than 3.0 wt%

Volatile matter : Less than 0.1 wt% (Dry base)

C. MACHINE CAPACITY

1. Guaranteed capacity

 $0.5 \le MI < 1.0$: 33,100 lb/h (15,000 kg/h)

 $1 \le MI \le 90$: 44,100 lb/h (20,000 kg/h) \downarrow

(10,000 kg/h)

D. SITE DATA

Location : Indoor use

Indoor Ambient Temperature : °F to °F

Outdoor Ambient Temperature : 20 °F to 105 °F

Humidity : 75 % to 80%

Altitude : 34 ft (10.4 m)

ILLV.: 4 PAGE 11 OF

E. APPLICABLE CODES AND STANDARDS

The Japan Steel Works Design Standards

JIS

Japanese Industrial Standard

JEM

Standards of Japan Electric Machine Industry Association

JEC :

Standards of Japanese Electrotechnical Committee.

IEC :

International Electrotechnical Commission

IEEE, NEAM and NFPA70, NEC are applicable

Note:

a. Machine parts and piping materials :
 Per JIS materials equivalent to ASTM and AISI

b. Piping (at the battery points)

A Piping and flanges are ANSI.

Piping (within the confines of JSW supplied equipment)
Piping and flanges are designed and fabricated in
accordance with the JSW standard based on our
experience for the similar service.

c. Area electrical classification Installation is in a non-hazardous, non-classified location. However, all equipment except the discharge gear pump DC motor are to be adequate for installation in a Class II, Division 2, Group G area.

F. LANGUAGE AND MEASURING UNITS

- All commercial and technical documentation including correspondence, specifications, drawings, instruction manuals and engineering data are in English.
- All dimension and measuring units are in British units.

. :

Temperature

°F

Length

inch, ft

Weight

lb

Press.

psig

Power

HP

Time

s, min, h

A Note) Each equipment should be manufactured based on ISO metric unit.

G. UTILITIES AVAILABLE

1. Power

Motor more than 201HP : 4160 VAC, 60 Hz, 3 Phase Motor less than 200HP : 460 VAC, 60 Hz, 3 Phase Instruments : 110 VAC, 60 Hz, 1 Phase

2. Instrument air

- Operating temperature : Amb.

- Design temperature : 130 °F

- Operating pressure : ♠ Min. 70 psig

Nor. 100 psig

Max. psig

- Design pressure : Max. psig

- Dew point temperature : °F

3. Cooling water (supply)

- Operating temperature : 86 °F

- Design temperature : 130 °F

- Operating pressure : 50 psig

- Design pressure : 50 psig

- Max. allowable pressure drop : 50 psig

- Fouling factor : 50 psig

- Fouling factor : 50 psig

- Fouling factor : 50 psig

- Ft ≥ h F/BTU.

4. Cooling water (Return)

Operating temperature
 Design temperature
 Design pressure
 Design pressure
 130 °F
 ⇒ 25 30 psig
 Design pressure

5. <u>Demineralized water</u>

- Operating temperature : Amb.100° F

- Design temperature : Amb.100° F

- Operating pressure : 50 70 psig

- Design pressure : 125 psig

PAGE 13 OF

Nitrogen (NL) 6.

-Operating temperature

Amb.

- Design temperature

130 °F

-Operating pressure

Min. psig Nor. 30 psig

psig

-Design pressure

Max. 36 psig

-Dew point temperature

°F

7. Steam

MS

-Operating temperature

Min. Nor.

575 °F

Max.

:

- Design temperature -Operating pressure

600 °F

Min. psig

Nor. 300 psig

psig Max.

-Design pressure

420 psig

SL

-Operating temperature

Min.

286 °F

Nor. Max.

°F

- Design temperature -Operating pressure

325 340

Min.

°F psig

Nor.

40 psig

Max.

psig

-Design pressure

50 psig

V. DOCUMENT SUBMITTALS

Documents and drawings will be submitted as outlined in Document Schedule Sheets.

VI. INSPECTION AND TEST

Equipment furnished is subject to be inspected and tested per JSW INSPECTION SPECIFICATION FOR CMP 305X−95₩ before shipment.

▲ 125₩

VII. PAINTING AND RUST PREVENTION

Rust prevention and painting at JSW/his vendor's shop will be done per JSW Painting Specification and Rust Prevention.

Surface treatment of equipment is SSPC SP-2 or SP-3.

WI. PACKING

Packing will secure safety of the equipment from damage by sea and overland transportation per MWK standards (L1-4TS-83 and L1-5TS-92) and bear clear making on the case.

IX. MECHANICAL GUARANTEE

SELLER undertakes to replace or repair at its discretion, on F.O.B. Japanese-port basis, any defects resulting from undesirable material, insufficient design or poor workmanship brought to its notice within eighteen (18) months from the date of shipment or within twelve (12) months from start-up, whichever comes earlier.

BUYER must provide SELLER sufficient time and opportunity to inspect and remedy such defects and permit adequate time for shipment of repaired parts or replacements. SELLER's obligation shall be deemed to have been fulfilled when such defective parts are properly repaired or replacements thereof are delivered on F.O.B. Japanese-port basis.

SELLER shall bear no liability concerning abnormal operation, improper or insufficient maintenance, or faulty erection by BUYER, for normal wear and tear, or for indirect or consequential losses, profit detention or damage of any nature.

Repair or replacement of parts or remounting of repaired parts at BUYER's site shall be performed by BUYER and at BUYER's expense.

For guarantee purpose, SELLER will send an erection supervisor and/or operation supervisor only on BUYER request at BUYER's expense.

NOTE

Prices and delivery terms are subject to re-adjustment in the case the technical specifications of the quoted machines are to be modified after receipt of formal Purchase Order.

X.EQUIPMENT SPECIFICATIONS

Starting Unit

Starting unit assembly is composed of starting motor and gear reducer with cam clutch to facilitate mixer drive before starting mixer drive motor.

1. Gear reducer part

Construction and design

Type

Enclosed helical

3-stage speed reducer

Center split gear casing

Capacity

100 HP (75 kW)

Input/output shaft speed:

1176 rpm/25 rpm

Gear radio

1 : 47

Gears

AGMA service factor ≥ 1.5

Bearing life

B-10 > 40,000h

Input/coupling

Gear coupling

Lubrication

Oil bath

b. Material

Pinions and gears

Special alloy steel

Surface treatment of

teeth

Carburizing

Casing

2

Fabricated steel plate

2. Cam clutch part

One way clutch to transmit torque in one direction of rotation and to overrun in the opposite direction of rotation.

Lubrication

Water cooled oil bath

TAME II OF

B. Mixer

1. Mixer gear reducer

a. Construction and design

Туре

Enclosed helical gear reducer with 2-stages speed shift

Center split gear casing

Capacity :

6,000 / 4,200 HP (4,474/3,132 kW)

Input shaft speed

1176 rpm

Output shaft speed

\$\frac{216}{215} \right| 156 \quad \frac{215}{151} \rpm

Gears :

AGMA service factor ≥ 1.5

Bearing life

Radial bearing

B-10 > 40,000h

Main thrust roller bearing

B-10 > 100,000h

Input coupling

Torque limit coupling

b. Material

Pinions and gears

Special alloy steel

Surface treatment of

teeth

Carburizing

Gear shafts

.

Gear Silaits

Forged steel

Casing

15

Cast iron or Fabricated

steel plate

c. <u>Instrumentation</u> and controls

Thermometers

2

For bearing on input shaft

Limit switches

For charge level of speed shaft

Bearing conditioning

sensor

On bearings

A Thermocouple

Oil bath

REV.: 5 PAGE 18 OF

d. Lubrication System

Complete forced lubrication system with pump, cooler, filter, oil flow sight, piping and necessary instruments. Main drive motor is to be interlocked to prevent start-up until adequate oil pressure is established in the lubrication system.

Piping material is carbon steel (JSW Standard). . But piping material after filter is stainless steel.

1) Lube oil pump with stand-by

Type

Gear pump with relief valve

Drive

20 HP (15 kW) x 6P

Delivery

122 B-460-360 : 695-116 GPM (440 liter/min)

Pressure

Max. 71 psig

2) Oil cooler (ASME with U-stamp, TEMA-C)

Type

Shell and tube

A 468,224

118,000

Heat transfer

5 475522

458,026 Btu/h (115,430 kcal/h)

Capacity

119,900

3) Filter (ASME with U-stamp)

Type

Dual oil filter

Screen

10 μm

2. Mixer Screws

a. Construction and Design

@125W

Model : CMP305X-95W, twin screws

Co-rotating and Intermeshing type

Feed section : 12.87 inch (327 mm) dia. \

Mixing section : 12.87 inch (327 mm) dia.

Screw has special oval configuration for effective mixing and melting.

Discharge section : 9.72 inch (247 mm) dia. L/D = 5

Screw speed : 215/151 rpm (2-speed type)

Slot clearance : 0.31 to 2.76 inch (8 to 70 mm)

(Screw axial direction)

Slot clearance permits the optimum operation for polymer mixing.

Screws are composed of screw shafts and replaceable screw segments.

b. Materials : Forged alloy steel

Feed and mixing sections are machined, ground and polished with screw surface nitrided.

Discharge section is machined, ground and polished with screw flight edges hard fusing with wear resistant material, and other outer surfaces chrome plated.

ILLY.: 4 PAGE 20 OF

3. Hopper Cylinder

a. Construction and Design

Feed hopper is mounted on inlet port of hopper cylinder.

Two hydraulic cylinders connect hopper cylinder to gear reducer to control mixer cylinder position for slot clearance adjustment.

Polymer design press

2,143 psig

Cylinder jacket is designed for cooling water circulation only.

:

:

Operating pressure

: 4 50 psig

Design pressure

429 psig

Hydrostatic test

643 psig

Pressure

To prevent powder leakage from gap between cylinder bores and rotating screws, sealing device is provided at rear side of hopper section.

One flexible bellows is provided between the bottom of hopper (by customer) and the inlet of hopper cylinder to absorb the slot movement of mixer cylinder.

b. Material

Hopper cylinder is of nitrided steel.

4. Mixing Cylinder

a. Construction and design

1 three

Mixing cylinders are composed of two cylinder barrels and supported on either side by cylinder supports.

Polymer design press

2,143 psig

Each mixing cylinder has drilled jackets for steam heating or water cooling

:

Operating pressure

△ 300 57 psig

Design pressure

429 psig

Hydrostatic test

643 psig

Pressure

Two nozzles for liquid additive injection are provided on the top of mixing barrel with plug.

b. Material

Mixing cylinders are of nitrided steel.

5. Discharge Cylinder

a. Construction and design

Discharge cylinders is composed of one cylinder barrel bolted to mixing cylinder and supported on either side by cylinder support.

Polymer design pressure

2,143 psig

Discharge cylinder has drilled jackets for steam heating or water cooling

A 300

Operating pressure

₩ psig

Design pressure

429 psig

Hydrostatic test

643 psig

Pressure

Vent port is privided on discharge cylinder.

Two replaceable liners coated with N-aloy are fitted inside discharge cylinder.

b. Materials

Discharge cylinder is of forged steel.

PAGE

Hydraulic Oil Unit for slot clearance Adjustment

Slot clearance (variable orifice to restrict polymer pathway) is automatically adjustable by axially movable mixer cylinder and hydraulic oil unit.

Hydraulic oil unit a.

Pump

Axial plunger type

Delivery pressure

5,714 psig

714 psig

Delivery volume

0.16 GPM (0.6 liter/min) (High)

1.06 GPM (4.0 liter/min) (Low)

Drive

1.0 HP (0.75 kW) \times 2 P

Oil tank volume

6.6 gallon (25 liter)

b. Attachments provided

Solenoid valve

Filters

Valve

Internal piping for hydraulic oil unit and rubber hoses

Other necessary instruments

Mixer Cylinder Supports 7.

Construction and design a.

Mixer cylinder supports have sliding faces on their tops to allow slot adjustment and expansion of the cylinders.

b. Material

Welded carbon steel plate fabrication

THE 24 OF

8. Cylinder Cooling Water Unit (CCW unit)

a. <u>CCW Tank</u>

BOX

Type Volume -Cylinderical type 316 gallon (400 liter)

Material

Stainless steel

b. CCW Pump

Type

Centrifugal type (Mechanical seal)

Capacity

119 GPM x 131 ft Aq

(450 liter/min × 40 meter Aq)

Material

Spheroidal graphite cast iron

Drive

15 HP (11 kW) x 2 P

c. CCW Cooler

Type

Plate

Capacity

1,011,840 Btu/h (255,000 kcal / hr)

Material : Stainless steel

:

:

d. CCW Internal Piping

Size

3 inch

Material

Carbon steel

(JSW Standard spec.)

9. Valve Stand

a. Construction and design

Valve stand is valve unit for water cooling or steam heating for cylinder.

b. Material

Piping classification shall be designed in accordance with JSW Standard.

10. Vacuum System

Vacuum system consists of polymer catcher drum, vacuum pump and separator.

a. Polymer catcher drum

Volume

Material

Carbon steel

Steam heating jacket is provided.

b. Vacuum pump (Mechanical seal)

Capacity

283 ft³/min x - 13.1 psi

 $(8 \text{ m}^3/\text{min } \times -700 \text{ mmHg})$

5

Material

Stainless steel

Drive

æHP (ækW) x ≉P

25 18.5 6

c. Separator

Volume

3.6 ft³ (0.1 m³)

Material

Carbon steel

TAGE 20 OF

C. Diverter Valve

a. Construction and design

Diverter valve is bolted to mixer cylinder end to divert degraded or unflexed polymer to the floor by activation of hydraulic cylinder.

Polymer design pressure

2,143 psig

Rupture disk (for 2,143 psig) is equipped on diverter valve.

Valve body has jacket for oil heating

Operating pressure

57 psig

Design pressure

857 psig

Hydrostatic test

1,286 psig

pressure

Hydraulic oil cylinder

Hydraulic pressure

8,571 psig

b. Materials

Body

Cast steel

Piston

Carbon steel

All surfaces in contact with polymer is chrome-plated

c. <u>Instrumentation and controls</u>

Limit switch

Diverter valve stroke ends.

KEV.: 5 | PAGE OF

D. Gear Pump

Gear Reducer

Construction and design

Type

Enclosed helical gear 3-stage speed

Casing to be split at center line.

Capacity

① 750 1,000 HP (746 kW)

Input shaft speed

115 to 1150 rpm

Output shaft speed

5.0 to 50 rpm

Input coupling

Gear coupling

Output

One Two Universal joints

Gears for G/R

AGMA service factor ≥ 1.5

Bearing life

 $B-10 \ge 40,000 h$

Material b.

Pinions and gears

Special steel alloy

Surface treatment of teeth:

Carburizing AND INDUCTION HARDENING

Shafts

Forged steel

Casing

Fabricated steel plate

Instrumentation and controls c.

Thermometer

For a bearing on input shaft

Bearing conditioning

On bearings

Sensor

PAGE OF.

2. Separate Drive Gear

a. Construction and design

Type Enclosed one pair of spur driving gear

unit to prevent gear teeth contact of gear pump by uniformly distributing

gear flank clearances 5750

Capacity

(Drive motor)

1,000 HP (746 kW)

Input/output speed

5.0 to 50 rpm

Gear

AGMA service factor ≥ 1.2

Bearing life

 $B-10 \ge 40,000 \, h$

Bearing condition sensor

On bearing

b. Material

Pinions and gears

Special alloy steel

Surface treatment of teeth

of teeth

Carburizing

Casing

Fabrication steel plate

c. <u>Lubrication System</u>

One complete forced lubrication system for gear reducer and separate gear drive are equipped with pump, cooler, filter, oil flow sight, piping and necessary instruments.

Gear pump drive motor is to be interlocked to prevent start-up until adequate oil pressure is established in the lubrication system.

Piping material is Carbon steel (JSW Standard) But piping material after filter is stainless steel.

1) Lube oil pump with stand-by

Type

: Gear pump

Drive

5 HP (3.7 kW) x 6 P

Delivery

:47 33 GPM (88 liter/min)

Pressure

71 psig Max.

2) Oil cooler (ASME with U-stamp, TEMA-C)

Type

Shell and tube

Heat transfer capacity

3) Filter (ASME with U-stamp)

Type

Dual oil filter

Screen

: 10 μm

3. Coupling Joint

a. <u>Universal joint connecting Gear Reducer and Separate Drive Gear</u>

Universal joints is equipped with shear pin to protect over-torque to gear pump.

Universal joint absorbs shaft center off-set resulting from mixer cylinder movement by heat expansion and slot adjustment.

b. Special couplings connrcting Separate Drive Gear and Gear Pump

Couplings unifoemly distribute gear flank clearance (black lash) on both sides of gear teeth for gear pump preventing metal to metal contact of gear teeth.

PAGE 30 OF

4. Gear Pump

a. Construction and design

Gear pump is directly bolted upstream diverter valve and downstream screen changer in tandem on the same floor level.

Type

Spur Gear Pump GP 400T

Polymer press.

Suction press is automatically

controlled by gear pump speed

control

Polymer design press.

5,000 psig

Speed

5.0 to 50 rpm

Casing has drilled jackets for oil heating

Operating pressure

57 psig

Design pressure

857 psig

Hydrostatic test

1,286 psig

pressure

b. Material

Gears

Nitrided steel

Bearings

Hardened steel (N-aloy)

Casing

Cast steel with chrome plate inside

c. Instrumentation

Pressure transmitter and thermocouple for melt resin on suction side of casing

Pressure transmitter for melt resin and thermometer on discharge side of casing

4-thermocouple for bearing temperature measurement.

TAGE SI UF

E. Screen Changer

1. Screen Changer

Screen changer is connected to the downstream of pump to enhance polymer quality in process by removing impurity contained in polymer. Slide bar shifts by hydraulic cylinder to exchange clogged screen pack.

a. Construction and design

Type

NSC 250DBW dual bar wide

type

Actual filter area

180 in² (1164 cm²)

Two screens are to be changed slowly and safely during mixer operation.

Two screen assemblies are in two slide bars.

Polymer pressure

Body design pressure

5,000 psig

Differential design pressure

2,857 psig

Main body has jackets for oil heating

Operating pressure

57 psig

Design pressure

857 psig

Hydrostatic test pressure

1,286 psig

b. Materials

Main body

Nitrided steel Inside surfaces

in contact with polymer is

chrome-plate

Slide bar

Nitrided steel

Breaker plate

Alloy steel

Screen

Stainless steel

REV.: PAGE 32 OF

2. Hydraulic oil unit for screen changer and diverter valve

Hydraulic oil unit consists of drive motor, pump, solenoid valve, pressure gauge and oil tank for screen changer and diverter valve.

Pump motor

7.5 HP (5.5 kW) × 4 P

Delivery

1.19 GPM (4.5 liter/min)

Delivery pressure

8,571 psig

3. Adaptor

Adaptor is installed between gear pump and screen changer.

a) Construction and design

Polymer design pressure

5,000 psig

Rupture disk (for 5,000 psig) is equipped on adaptor.

Adaptor is designed with jacket for oil heating only.

Operating pressure

57 psig

Design pressure

857 psig

Hydrostatic test pressure

1,286 psig

b) Materials

Forged steel Inside surface in

contact with polymer is chrome

plated.

TAGE 33 OF

F. Underwater Cutter

Underwater cutter is composed of die holder, die plate, water chamber and cutter unit to pelletize polymer strands extruded through die plate into pellets in hot water.

1. Die holder

Die holder is bolted to screen changer and die plate is bolted to the other side.

The hole with blind plug for rheometer (return type) is provided

a. Construction and design

Polymer design press.

2,857 psig

Rupture disk (for 2,857 psig) is equipped on die holder.

Die holder has jackets for oil heating:

Operating pressure

57 psig

Design pressure

857 psig

Hydrostatic test pressure

1.286 psig

b. Materials

Forged steel Inside surfaces in

contact with polymer is chrome-

plated

:

c. <u>Instrumentation</u> and controls

Press. transmitter

For polymer pressure

Thermocouple

For polymer temp.

Thermometer

For steel temp.

IND V.: | PAGE 34 OF

2. Die Plate

Heat channel die effectively prevents freezing of die nozzles even at low throughput owing to high heat transfer construction.

a. Construction and design

Type

Heat channel die

Number of die holes

0.098 inch (2.5 mm) dia.

x approx. 944 holes

Polymer design press

2,857 psig

Die plate has drilled jackets for oil heating

Operating pressure

57 psig

Design pressure

857 psig

Hydrostatic test pressure

1,286 psig

b. Materials

Stainless steel with titanium

carbide plate on cutting surface

c. Instrumentation and controls

Thermocouple

For die plate steel temp.

TYLIT.. | FAGE 30 UF

3. Water Chamber

Water chamber is clamped to die holder by quick open/close mechanism. Hot water is pumped into water chamber for underwater pelletizing and conveys pellets to dewatering equipment.

a. Construction and design

Two hinged side doors are provided on the both sides. Operator's side has a peep window.

One scope lamp is provided on the opposite side door.

Water chamber design press.

57 psig

Hot water inlet/outlet size

8" / 10"

b. Materials

Cast stainless steel

c. <u>Instrumentation and controls</u>

Two limit switches are provided for side doors

One limit switch is provided to ensure the contact of water chamber with die holder.

IND V.: | PAGE 36 OF

4. Cutter Unit

Cutter motor is directly connected to cutter shaft by gear coupling covered with safety guard.

Cutter shaft can stroke back and forth by activation of hydraulic cylinder provided inside cutter unit.

The cutter blades can be kept to contact to the cutting surface of die plate automatically by activation of hydraulic cylinder.

Cutter holder is designed for ease of exchange after disconnecting water chamber from die plate by releasing clamp device.

Cutter shaft adjusting handle and a dial gauge are provided at rear end of casing.

a. Construction and design

Type : ADC-75

Drive : 87 HP (65 kW)

Cutter speed : 115 to 1150 rpm

Number of cutter blades : 16 blades

Lubrication : Oil bath, grease

b. Material

Casing : Cast iron

Cutter blade : Titanium carbide

Cutter holder : Stainless steel

Cutter shaft : Stainless steel

c. Instrumentation

Dial gauge

Proximity switch for cutter blade wear alarm.

REV.: 5 PAGE 37 OF

5. Hot Oil Unit

Hot oil unit is used to heat diverter valve, adaptor, gear pump, screen changer, die holder and die plate.

Hot oil unit consists of oil pump with stand by, expansion tank, electrical heater, instrument, and internal piping, which are mounted on one skid.

Control panel for hot oil unit is installed sepalately in electrical room.

△ 500 – 572°F (260 – 300°C)

1) Operating temparature : Normal : 500°F (260°C):

Design : 750 °F (399°C)

2) Electric heating capcity : 491 HP (122 kW x 3sets)

3) Pump capacity : 239 GPM (900 liter/min) x 230 ft TDH

4) Pump drive motor : 40 HP (30 KW) \times 2P

(5) HEATER SHELL AND : ASME WITH U-STAMP EXPANSION TANK

PAGE 38 OF

G. Carriages

Two independent carriages support pelletizing components and move on rails in direction of mixer screw axis for quick and accurate line-up.

Carriage for Diverter Valve, Gear Pump, Screen Changer and Die Head.

Carriage for Water chamber and Underwater pelletizer with motor.

a. Construction and design

Support height of carriages are adjustable with adjusting bolts and shims. Carriage wheels can be driven by either a direct ratchet lever (for gear pump, screen changer and die holder) or a handle (for underwater cutter unit and drive motor).

b. Materials

Steel fabrication

REV.: PAGE OF

H. Drying System Specification

OFF

1. Pre-dewatering Screen

Type

Box type with-cylindrical-screen

Material

:

Stainless steel for parts in contact with slurry

Screen

2 mm dia. punched steel

2. Dewatering Screen

Construction and design a.

Inclined screen which separates agglomerates from the pellets and discharges agglomerates through a swing gate operated pneumatically.

Type

GALA

Agromerate size

More than 1 inch (25 mm)

b. Material Stainless steel for parts in contact with slurry

Centrifugal Dryer 3.

Construction and design

Type

GALA 32.5 DW

Speed

410 rpm

Drive

20 HP (15 kW) x 4 P

b. Material Stainless steel for parts in contact with slurry

and carbon steel for others

Construction and design

Type

Mechanically vibrating classifying type

(52A SS/SS)

A Screen

:

0.31 inch (8 mm) dia. punched

plate

Bottom 12 mesh screen

Drive

7.5 HP (5.8 kW) × 6 P

Material

Stainless steel for parts in contact with pellets

and carbon steel for others Flexible canvas are provided

5. Exhaust Fan

a. Construction and design

Type

Centrifugal fan :

Capacity

 $5,297 \text{ Nft}^3/\text{min} \times 0.082 \text{ ftAq}$

(150 Nm 3 /min \times 25 mmAq)

3.7 (5) 5

Drive

7.5 HP (5.5 kW) × 4 P

b. Material

Carbon steel with epoxy coating

6. Damper

a. Construction and design

Damper is installed before the exhaust fan.

b. Material

Stainless steel

REV.: 5 PAGE OF 41

Pellet Conveying Water System (PCW) Specification 1.

1. PCW Tank

a. Construction and design

Type

Box type

Volume

424 ft3 (12 m3)

b. Material

Stainless steel for parts in contact with liquid

PCW Pump with stand-by-

a. Construction and design

1 Vertical

Type

Centrifugal type (Mechanical seal)

1,162 GPM × 98-ft 35 (4,400 liter/min. × 30 meter)

Drive

75 HP (55 kW) \times 4 P

b. Material

Stainless steel for parts in contact with liquid

3. PCW Cooler

Construction and design

Type

Plate type

Heat Exchanged

Approx. 13,269,000 Btu/h

(3,344,000 kcal/h)

Capacity

Design

PCW side

CW side

: -57 psig

Cooling water

Inlet

:⁴⁰86 °F

Outlet

: 10/°F

 ΔT

10 °F (10 °C)

14.4 15

b. Material

Stainless steel for parts in contact with PCW water

REV.: 5 PAGE 42 OF

4. PCW Screen

a. Construction and design

אמ

Type

Inclined type installed near PCW Tank

Material

Stainless steel for parts in contact with liquid

440

:

Screen

30 mesh

5. PCW 3 Way Valve

a. Construction and design

Size

8 inch (lower line)

12 inch (upper line)

b. Material

Stainless steel